Direct simulation Monte Carlo modeling of e-beam metal deposition
نویسندگان
چکیده
منابع مشابه
Direct simulation Monte Carlo modeling of e-beam metal deposition
Three-dimensional direct simulation Monte Carlo ͑DSMC͒ method is applied here to model the electron-beam physical vapor deposition of copper thin films. Various molecular models for copper-copper interactions have been considered and a suitable molecular model has been determined based on comparisons of dimensional mass fluxes obtained from simulations and previous experiments. The variable hard ...
متن کاملDirect simulation Monte Carlo study of effects of thermal nonuniformities in electron-beam physical vapor deposition
Direct simulation Monte Carlo study of effects of thermal nonuniformities in electron-beam physical vapor deposition" (2011). In a typical electron-beam physical vapor deposition system, there is limited control over how the high-power electron beam heats the metal surface. This leads to thermal nonuniformities at the melt. Three-dimensional direct simulation Monte Carlo simulations were perfor...
متن کاملFluctuating Hydrodynamics and Direct Simulation Monte Carlo
Thermodynamic fluctuations are significant at microscopic scales even when hydrodynamic transport models (i.e., Navier-Stokes equations) are still accurate; a well-known example is Rayleigh scattering, which makes the sky blue. Interesting phenomena also appear in non-equilibrium systems, such as the enhancement of diffusion during mixing due to the correlation of velocity and concentration flu...
متن کاملBayesian Mixture Modeling by Monte Carlo Simulation
It is shown that Bayesian inference from data modeled by a mixture distribution can feasibly be performed via Monte Carlo simulation. This method exhibits the true Bayesian predictive distribution, implicitly integrating over the entire underlying parameter space. An innnite number of mixture components can be accommodated without diiculty, using a prior distribution for mixing proportions that...
متن کاملMonte Carlo Simulation of Hyperthermal Physical Vapor Deposition
Low-pressure sputtering and ionized vapor deposition processes create atomic fluxes with kinetic energies in the 1.0–20 eV (and above) range. The impact energy of these hyperthermal atoms significantly effects the surface morphology and structure of vapor deposited films. Recent molecular dynamics simulations of metal atom interactions with a metal surface have established the energy and angula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
سال: 2010
ISSN: 0734-2101,1520-8559
DOI: 10.1116/1.3386592